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Despite the great advances made in the chemistry of polyhedral
closchoranes;? these are never seriously thought of as large @ X@BuH: X CHARGE ® X@BuH.s

enough to enclose an atom insiti€ The most stable polymorph ! c 2 ;
of elemental boron provides the closest example of an encapsu- 3 Be 0 9
lated arrangemertWe present here the results of theoretical : b 4 n
studies that strongly suggest that a rich endohedral chemistry is s e % z

awaiting to be unfolded for BH,#~ and higher boranes. This
strategy could be particularly employed in stabilizing higtlesc
boranes that are otherwise less stabfe.

The B1-B12 distance of 3.36 A in BH;,?~ allows as much

Figure 1. Schematic structures and the actual molecular formulas of (a)
X@B12H12 and (b) X@B4H14.

as 1.68 A to the bond between the central and peripheral gtoms, L (A) e m e et DA |
. X X . 5 | 1284 5
even in the absence of any relaxation in thg 8hell (Figure
1a). This is approximately 0.1 A short in comparison to standard ; NS
multicentered B-B bonding distance. Hence, introducing a central P
atom of size comparable to boron will impart steric strain, making 1 10 = 12,(4) mm— et eee e i
the cage to expand. However, introducing a central atom with a o Thy(S) ===mmmmmmmm -
set of 2s and 2p orbitals{and t,) will stabilize the corresponding 1t1,(3) e — \
set of orbitals of BH;, 2, provided no additional valence sm| D) [ —a
electrons are added (Figure 2). Encapsulating ions such*as Li 1 (3) - - - i — 2
Be?*, B3, C¥F Mg?t, AI®*, and Zi#t should achieve this goal. Thg(5) mumm- - -2 - -« e
Accordingly, C@B:H12t, B@BHiz", Be@BH1o Li@BiHis
Mg@ByH12, Al@B1H157, Zn@By,H1, are considered as possible 20Z] 1, (3) e
cases (Figure 1a). We also study X@H,4," (Figure 1b) to find
out the extent of stabilization of higher boranes by endohedral lag(]) mm-eeeeee oo —
binding. With these goals in mind X@B," (1-7) and 25 ByHp," By3H;;" B*

X@B14H14" (8—12) are optimized at the hybrid HF-DFT level

B3LYP/6-31G*1011 All calculations were performed with sym-  Figure 2. Schematic diagram for the interaction ofz2H1*~ with B3*

metry constraints using Gaussian 94 packé&g¥ibrational constructed using extended Huckel thebihe occupied levels are shown

frequencies are calculated to ascertain the nature of the stationans thick lines.

points. The corresponding exohedral isomers are also computed

to assess the amount of strain involved in encapsulation. For thisat the same level of theory. Here, the substituent is placed just

purpose, structures with X outside the B3 triangle is optimized outside the center of the triangular face. Selected geometric
- : — ) parameters, zero point energies, lowest frequencies, and the strain
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Table 1. Bond Lengths, Zero Point Energies and Lowest These are better seen in the polyhedron exchange reactions,
Vibrational Frequencies at B3LYP/6-31G* Level forBl1,*~ and given in eq 1.
the Stuffed Systems-15
-2 -2
bond Iengths (A) X@BlZHlZ + Bl4Hl4 - X@Bl4Hl4 + BlZle (l)
doped ZPE (min freq.) radial skeletal
no. molecule kcalmol(eni) B-B B-B B—H AE (kcal/mol)=17.2 (X=B"); —0.9 (Be);—25.7 (Li");
BioHiz 2 104.9 (520) 1.700 1.787 1.208 _ Y.
1 C@BH.2" 90.3(563) 1.767 1.858  1.192 52.9 (Al); —76.3 (Mg)
2 B Hio™ 100.8 (214 1.768 1.859 1.180 .
3 B?(géz,_l'; 105.7 E409g 1779 1.870 1.180 The preference of a smaller encapsulating atom fpHB?*~
4  Li@BpHi 106.8 (414) 1779 1870 1190 is clearly demonstrated here. Thus, the stability 3,72 in
5  Al@BiHis" 98.6 (231) 1.910 2.000 1.175 relation to B,H;, 2 is increased by encapsulation with Li. These
6 Mg@BiHi2 99.5 (235) 1.923 2.020 1.180 are to be considered in the background of the inherently higher
7 Zn@ByHi 91.0 -177) 1936 2.036 1.180 stability of (~30 kcal/mol) of B,H;,72.37 The extra stability of
the polyhedral dianions is avoided in the near isodesmic exchange
Table 2. Bond Lengths, Zero Point Energies and Lowest equation (2). These again indicate the preference of the larger
Vibrational Frequencies at B3LYP/6-31G* Level for#l142~ and ion for the larger polyhedron.

the Stuffed Systems-812

doped  ZPE (min. freq.) bond lengths (A) X@ByHy, + Y@ByHyy—~ X@By Hy, + Y@BH, (2)
no. molezcule kcal/mol (cnt™) 1-2 1-3 2-3 3-4 4-5 AE (kcal/mol)= 42.9 (X = B+, Y =Li"); 18.0 (B+, Be):
BiH14™ 122.5 (337) 1.581 1.927 1.744 1.769 . " . .
8 B@BuHii+ 117.0¢-362) 1.633 1.983 2.047 1.841 1.756 70.1 (B", AI"); 93.5 (B, Mg); 24.9 (Be, L7);
9 Be@BsHis 122.0(221) 1.738 1.952 2.038 1.952 1.799 52.1 (Be, AF); 75.5 (Be, Mg); 27.2 (Li, A|+);
10 Li@BiHi1s~ 123.9(268) 1.754 1.950 2.035 1.786 1.816 _
11 Al@ByuHy* 117.0(174) 1.902 2.036 2.178 1.875 1.861 50.6 (Li~, Mg); 23.4 (Al", Mg)

12 Mg@B.His 118.2(-210) 1.923 2.045 2.191 1.882 1.873

In each case, the larger central ion prefers the larger polyhedron

Table 3. Interaction Energies with the Central lor@nd EY) by substantial magnitudes. Stuffed icosahedral systems are well
and Their Strain Energie&® and EY (the Difference between characterized in metallic elements such as alumiituthbut the
Exohedral and Endohedral Structures) in kcalkfiotal Energies highest coordination for boron experimentally reported so far is
(au) Are Given in Supporting Information nine, which occurs in itg-rhombohedral polymorphlsolated
Ea b Ec Ed B13 clusters prefer nonicosahedral sheetlike geoméfrigs.

. If our calculations are any indication, the chemistry of higher

ion  X@BrHi" X@BuHiw' X@BiHi' X@BuHid polyhedral boranes will find a match in these charged and neutral
Cc* —2923.9 —2808.4 153.7 stuffed boranes proposed here. These compounds should have a
B3t —1413.6 —1396.4 60.6 diverse chemistry of their own, one which is very different from
Be* —584.2 —584.9 58.3 46.4 that of B,H.2~. Extension of these ideas, to other icosahedral and
L —99.6 —1253 1159 82.8 larger clusters is straightforwaté While there seems to be no
@I'gz . :gg’g:g :ggg:g ;Z;é immediate conventional synthetic routes for these stuffed systems,

7+ ~569.0 266. 0 the strateg_ies adopted _for X@;@ompqunds and Iar_ge AI clus_ters
come obviously to mind*'8-21 Stuffing in combination with
polycondensation of boranes can lead to the design and synthesis
amounts. The lowest difference is obtained with B and Be as the of novel stuffed borane nanotub®sThe ingenuity of the
encapsulating elements. Calculations including electron correlationexperimentalists knows no bounds.

at the MP2/6-31G* level reduces the strain energies for BEB"
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